

Chao-Gan YAN, Ph.D. 严超赣 ycg.yan@gmail.com <u>http://rfmri.org</u> Institute of Psychology, Chinese Academy of Sciences

Outline

- Quality Control
 - Statistical Analysis
 - Results Viewing



Quality Control Users/vg/tTra/MTmDs/ts/CP/ARSF_Updating/AnvanceText3

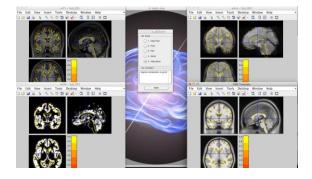
Quality Control

Sub_001				QC: Raw T1
				QC: Raw Fun
			Q	C: Normalization
			The	eshold QC Score
			Generate Group Masks	
			The	eshold Coverage
			,	lotion Report
	Load Subject List	Save Subject List	Th	reshold Motion

Quality Control

Quality Control

DPARSFA_Setting2.mat		7	RawFunImgQC.tsv
DPARSFA_Setting3.mat		C	RawT1ImgQC.tsv
Funimg	Þ		
FunImgA	Þ		
FunImgAR	Þ		
FunImgARW	Þ		
FunImgARWS	Þ		
FunImgARWSF	Þ		
FunRaw	Þ		
Masks	Þ		
PicturesForCrmalization	Þ		
🗀 oc) Þ.		


14	A	8		C	D
1	Subject ID	QC Score		QC Comment	
2	Sub_001		5	Very Goodl	
2	500_001		2	very Goodi	

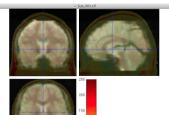
00	DPABI_VIEW	
Brain Images Overlay	> 0 Underlay AnemyogffraterfrabasDev	- 1016.21
Overlay Contigure	P df Only + • N Cluter \$ M	n. 1
Paddin x		S


Warking Directory Quality Control Funimg Users/ycg/ITraAll/ITraData/DPARSF_Updating/AdvanceTest3 Manually QC: Raw T1 QC: Raw Fun QC: Normalization Threshold QC Score Generate Group Masks Threshold Coverage Motion Report Threshold Motion 1 Load Subject List Save Subject List 8

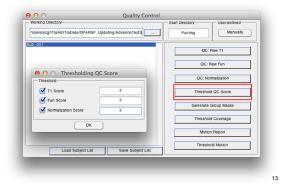
Quality Control

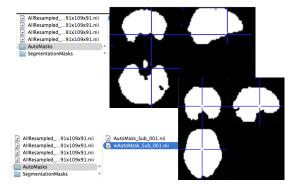
Quality Control

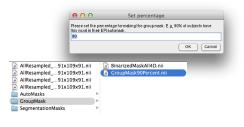
Quality Control


Quality Control

ñ	DPARSFA Setting2.mat			NormalizationQC.t
ħ	DPARSFA_Setting3.mat		5	RawFunImgQC.tsv
ā	Funimg	Þ	2	RawT1ImgQC.tsv
	FunImgA	Þ		
î	FunImgAR	Þ		
	FunImgARW	Þ		
	FunImgARWS	Þ		
	FunImgARWSF	Þ		
	FunRaw	Þ		
î.	Masks	Þ		
	PicturesForCrmalization	Þ		
	QC) P		

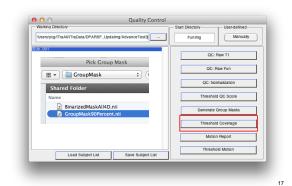

Quality Control

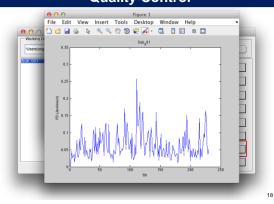

Quality Control


<complex-block>

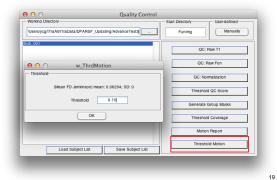
Quality Control

Quality Control




Quality Control

This mask is very important for group statistical analysis!!!


Quality Control

Quality Control

Quality Control

Quality Control

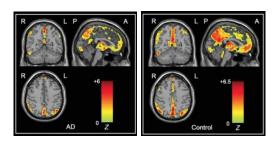
- \succ Using the visual inspection step within DPARSF, subjects showing severe head motion in the T1 image and subjects showing extremely poor coverage in the functional images, as well as subjects showing bad registration were excluded
- Subjects with overlap with the group mask (voxels present at least 90% of the participants) less than 2*SD under the group mean overlap (threshold: 92.2%) were excluded
- Subjects with motion (Mean FD Jenkinson greater than 2*SD above the group mean motion (threshold: 0.192) were excluded

Yan et al., 2013, Neuroimage Length Article

Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes Chao-Gan Yan ^{k,b,c}, R. Cameron Craddock ^{k,b}, Xi-Nian Zuo ^d, Yu-Feng Zang ^c, Michael P. Milham ^{k,b,d}

20

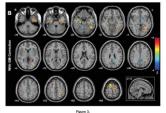
Outline


- Quality Control
- **Statistical Analysis** •
- Results Viewing

Statistical Analysis

Two-Sample T-lest Paired T-lest ANCOVA (Repeated Measures) Complation Analysis Meed Effect Analysis			
Base 0 Remove Add		Remove Add	Remove Add
	Output Mask File Output Dir Prefix T	/Usersichao ganyan d	- 7

One-Sample T-Test


Wang#, Yan# et al., 2011, Hum Brain Mapp

One-Sample T-Test

1 for m* images

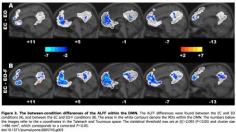
Two-Sample T-Test

Wang[#], Yan[#] et al., 2011, Hum Brain

Two-Sample T-Test

Two-Sample T-Test with covariates: e.g. gray matter proportion images Pldณิสหรรณช สมาชิปิศิลาร์ (สุขุญภาพชียวิกะ beause split กอยามุย เยมิสาณะ and the covariate images: เศยสย สาร์เหตร์ (ก็เลือก PD), age, sex etc.)

Two-Sample T-Test



T Statistic Image: positive corresponds to the mean of Group 1 is greater than the mean of Group 2

27

29

Paired T-Test

Yan et al., 2009. PLoS ONE

Paired T-Test

Condition 1 - Condition 2 Please make sure the correspondence

ANOVA or ANCOVA

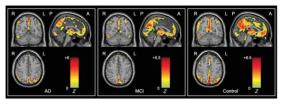
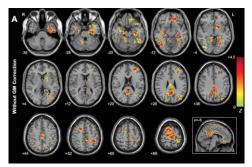



Figure 1. Within-group ALFF maps within the AD, MCL and healthy elderly control groups. Visual inspection indi-cated that the PCC and adjacent PCu had the highest ALFF values within each group and had different strengths among the three groups. The statistical threshold was set at 2 > 3.09 (P < 0.001) and cluster size >189 mm, which corresponded to a corrected P < 0.001. Right L, left $P_{\rm control} r, A$ network [Color figure can be viewed in the online issue, which is available at wileyonlinelbrary.com.]

Wang[#], Yan[#] et al., 2011, Hum Brain Mapp

ANOVA or ANCOVA

Wang[#], Yan[#] et al., 2011, Hum Brain

31

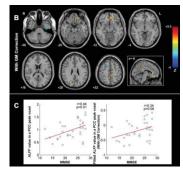
ANOVA or ANCOVA

ANCOVA: e.g. gray matter proportion images (Oakesetatic2007age Playsernianage)redheerorsespanedearebetheerorseptembernations the covariate imagesi ସାଣ୍ଡଳ ଜାନାନ ଦହନା ସୁଡ୍କେମ୍ବର ଅନ୍ତର୍ଯ୍ୟ କରିଥିବା କରିଥିବା କରିଥିବା କରିଥିବା କରିଥିବା କରିଥିବା କ

ANOVA or ANCOVA

Post-hoc procedures: the corrected p values under a given control procedure for comparing group means of any pairs were calculated (e.g., through Studentized Range statistic for Tukey-Kramer correction) with the same route as MATLAB command multcompare. The p maps were then converted to Z maps according to the Normal inverse cumulative distribution function (norminv), with the sign of group mean differences applied.

ANOVA or ANCOVA

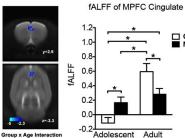


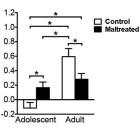
ANOVA F image The difference of mean between groups The corrected p of difference between groups

The corrected Z values of difference between groups, can be forwarded to further multiple comparison correction

Yan et al., 2016. Neuroinformatics₅

Correlation Analysis




Wang[#], Yan[#] et al., 2011, Hum Brain

Correlation Analysis

Group Images	Covariate Images	- Text Covar	1978
Remove Add	Remove	Add	Remove Add
Convestor Seed Sares	Output Mask File Output De Prefix R		Permutation test (PALM) Pan
The imaging measure: ALFF maps			

Mixed Effect Analysis

Yan et al., 2016. Translational

• • •	Statistical A	nalysis	
Mixed Effect Analysis			0
Sroup Images	Covariate Images	Text Cover	adas
9) (G115) Altensiyag Drugbash Travit-OntentTravit- 0 (G125) (Assessing Decision Travit-OntentTravit- 0 (G125) (Assessing Decision) Travit-OntentTravit- 0 (G125) (Assessing Decision) Travit-Ontent Travit- 0 (G125) (Assessing Decision) (Assessing Travit- 0 (G125) (Assessing Travit- 0 (G125) (Assessing Decision) (Assessing Travit- 0 (G125) (Assessing Decision) (Assessing Travit- 0 (G125) (Assessing Travit- (G125) (
Remove Add	Ben	Add	Remove Add
	Output		
	Mask File		
	Output Dir		
	Pulk M		Permutation test (PALM) Plan
The imaging measure			
should be: Group1Condition1			
Group1Condition2			

Statistical Analysis

- _OLS_brain, TF_ForContrast_brain, r_OLS_brain, Header] = y_GroupAnalysis_Image(Deg t_OLS_brain, TF_ForContrast_brain, r_OLS_brain, Header] = y_GroupAnalysis_Image(D
- IIIP FORMATION (1998) det have estatile som an and the mark file. (entited) 40 date marine (Dissociare/Galdwallare/Santas) at the directory of image covaria (pational) Contrast for T-feet (for f-fact, localit main). (pational) Contrast (localit main) 40 date (locality) (locality) (locality) 40 date (locality) (loc ich the files should be

- me_b.nii, OutputName_T.nii beta and t value files results
 me Residual.nii (optienal) Residual files
- Psychiatric Research, 148 Old Orangeburg Road, Orangeburg, NY 10962, USA Avenue, New York, NY 10022, USA Camen Institute for Prediatric Neuroncience, New York University Child Stu
- oscience, New York University Child Study Center, New York, NY 10016, USA

{DPABI_Dir}/StatisticalAnalysis/y_GroupAnalysis_Image.m

Mixed Effect Analysis

- *_ConditionEffect_T.nii the T values of condition differences (corresponding to the first condition minus the second condition) (WithinSubjectFactor)
- *_Interaction_F.nii the F values of interaction (BetweenSubjectFactor by WithinSubjectFactor) • *_Group_TwoT.nii - the T values of group differences
- (corresponding to the first group minus the second group). Of note: the two conditions will be averaged first for each subject. (BetweenSubjectFactor)

Statistical Analysis

Statistical Analysis

- 2_0L5_brain, t_0L5_brain, TF_ForContrast_brain, r_0L5_brain, Header] = y_GroupAnalysis_Image(DependentVolume,Predictor,OutputName,I |b_0L5_brain, t_0L5_brain, TF_ForContrast_brain, r_0L5_brain, Header] = y_GroupAnalysis_Image(DependentVolume,Predictor,OutputName
- ndentVolume 4D data matrix (DimV+DimV+DimV+DimV+DimPoints) or the directory of 3D image data file or the filemame of one 4D d. Lictor the Predictors H (subjects) by N (traits), SHOULD EXCLUBE the COMSTANT column if meeded. The program will not add constant o utdame the output mane, (should not have extention such as imge,nii)
- Degendentiation 40 data matrix (BaseGumidabdalishadist) matrixes 00 features 1 higher(s) by (Trains), BookSuck the (GOMBAT, GOMBAT, GOMBAT, BASE, BASEE, BASE, BAS s, in which the files should be

- utput: OutputName_b.nii, OutputName_T.nii beta and t value files results OutputName_Residual.nii (optional) Residual files
- Tgothum_Conservation versions Tgothum_Conservations Hardan Stiller for Pyroklatric Nesearch, 148 Eld Grageburg Raad, Orangeburg, NY 10052, USA Hard Sattlitz, 45 Park Jenewa, New York, NY 10022, USA Hydlis Green and Raedolph Cowen Institute for Peljatric Heuroscience, New York University Child Study Center, New York, NY 10018, USA

{DPABI Dir}/StatisticalAnalysis/y GroupAnalysis Image.m

Smoothness estimation based on the 4D residual is built in this function!!!

Statistical Analysis

http://rfmri.org/DemoData

{Download}/ProcessingDemoData/StatisticalDemo/AD_MCI_NC/

ALFF: AD - NC Two Sample T Test:

- Applied smooth kernel in preprocessing: [4 4 4]
 Smooth kernel estimated on 4D residual: [6.77 6.88 6.71]
- Smooth kernel estimated on statistical image (T to Z, as in easythresh): [6.90 7.33 6.94]

ReHo: AD – NC Two Sample T Test: • Applied smooth kernel in preprocessing: [4 4 4]

- Smooth kernel estimated on 4D residual: [8.10 8.50 7.93]
- Smooth kernel estimated on statistical image (T to Z, as in easythresh): [8.33 8.94 8.24]

Thus, only using smooth kernel applied in preprocessing is NOT sufficient!!!

Statistical Analysis

- _OLS_brain, t_OLS_brain, TF_ForContrast_brain, r_OLS_brain, Header] = y_GroupAnalysis_Image(Depen [b_OLS_brain, t_OLS_brain, TF_ForContrast_brain, r_OLS_brain, Header] = y_GroupAnalysis_Image(Dependent)
- Spectra in the second s

- OutputName_b.nii, OutputName_T.nii beta and t value files results OutputName_Residual.nii (optional) Residual files
- ing the second s

Statistical Analysis

Paste

C1 C2

EVs Contrasts & F-tests

Contrasts 2 📮 F-tests 0

ral Linear Model

 Title
 EV1
 EV2

 G1>G2
 1
 -1
 0

 G2>G1
 -1
 1
 0
 0

View design Efficiency

.

1	008	(Model	_
1			
1			
1			
1		- 11 A	
1			
1			
1			
		Group1	Groups
C1	01>02	1	-1
02	02>01	-1	1

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM

Statistical Analysis

Statistical Analysis

Multiple Comparison Correction

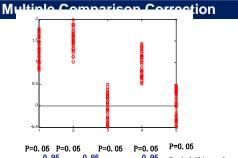
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM

Multiple Comparison Correction

PNAS

... I estimate about 15,000 papers use cluster size inference with correction for multiple testing; of these, around 3,500 use a CDT of P=0.01...So, are we saying 3,500 papers are "wrong"? It depends....

> -- Thomas Nichols July 06, 2016

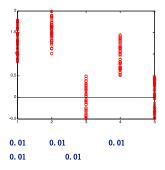

Correction

NEUROSCIENCE, STATIS

sten have inflated bile-positive rates," by Anders Ekland, homas E. Nichola, and Hans Knutston, which appeared in issues 8, July 12, 2016, of *Proc Natl Acad Sci* USA (115:700–7005; rate autors note that on page 7000, in the Significance autors and the appeared of the state of the state of the instance and the appeared of the state of the state of the instance and the appeared of the state of the state of the instance and the appeared of the state of the state of the instance and the state of the state of the state of the instance and the state of the instance of the instance of the instance of the state of the instance of the instance of the instance of the state of the instance of the instance of the instance of the state of the instance of the instance of the instance of instance of the instance of t

fifth full quarks, and the set of the set of

www.pnas.org/kg#doi/10.1073/pnas.1612033113



Probabilityphain 195 Probabilityphain 195 not gettings gettings gettingtagettingtagetting false possizeepositize posfaise posfaise posfaise result: result: result: result: result:

51

Multiple Comparison Correction

Bonferroni correction: p=0.05/5=0.01

Multiple Comparison Correction

•False Discovery Rates (FDR) correction

- · Family-Wise Error (FWE) correction
 - Bonferroni correction: 0.05/5=0.01
 - Gaussian Random Field theory correction
 - Monte Carlo simulations (AlphaSim)
 - Threshold-Free Cluster Enhancement
 - Permutation test

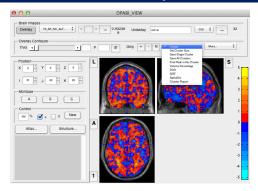
FDR Theory

Number of errors committed when testing m null hypotheses

	Declared non-significant	Declared significant	Total
True null hypotheses	U	v	<i>m</i> 0
Non-true null hypotheses	Т	s	$m - m_0$
	$m - \mathbf{R}$	R	m

False discovery rate

 $Q_e = E(V/(V+S)) = E(V/R)$

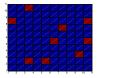

Benjamini and Hochberg, 1995, Journal of the Royal Statistical Society

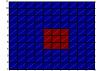
FDR Theory

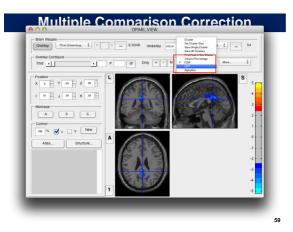
• Let H_1 , …, H_m be the null hypotheses and P_1 , …, P_m their corresponding p-values. Order these values in increasing order and denote them by $P_{(1)}$, …, $P_{(m)}$. For a given q, find the largest k such that $P_{(k)} \leq kq/m$.

•Then reject (i.e. declare positive) all $H_{(i)}$ for i = 1, ..., k.

FDR Theor	'y
-----------	----




FDR Theory


Multiple Comparison Correction

Gaussian Random Field Theory Correction Monte Carlo simulations (AlphaSim)

?

Multiple Comparison Correction

Mask File	Programs/DPABI/Initializing/Templates/Brain	Aask_05_61x7	3x61.img
FWHMx	6.7747 FWHMy 6.8806 FWH	Mz 6.70	5 dLh 0.4050
Est	nate smoothness on statistical image directly (f	ollowing FSL e	asythresh codes)
Voxel p v	Cluster p value		Two Tailed
	Compute		

Voxel Z > 2.3, Cluster P < 0.05, Two One-Tailed Corrections: equivalent to Voxel P < 0.0214, Cluster P < 0.1, Two Tailed.

Multiple Comparison Correction

Multiple Comparison Correction

Cl Size	Frequency	Cum Prop p/Voxel	Max Freq	Alpha	
1	235971	0.619898	0.009613	0	1.000000
2	76150	0.819945	0.006282	0	1.000000
3	32297	0.904789	0.004131	0	1.000000
4	15940	0.946664	0.002763	0	1.000000
5	8476	0.968930	0.001863	0	1.000000
6	4786	0.981503	0.001265	1	1.000000
7	2767	0.988772	0.000860	19	0.999000
8	1606	0.992991	0.000586	51	0.980000
9	1011	0.995647	0.000405	127	0.929000
10	585	0.997184	0.000276	132	0.802000
11	391	0.998211	0.000194	172	0.670000
12	236	0.998831	0.000133	146	0.498000
13	164	0.999262	0.000093	107	0.352000
14	98	0.999519	0.000063	78	0.245000
15	69	0.999701	0.000043	61	0.167000
16	37	0.999798	0.000029	30	0.106000
17	22	0.999856	0.000020	22	0.076000
18	22	0.999913	0.000015	21	0.054000
19	11	0.999942	0.000010	11	0.033000
20	7	0.999961	0.000007	7	0.022000
21	5	0.999974	0.000005	5	0.015000
22	5	0.999987	0.000003	5	0.010000
23	4	0.999997	0.000002	4	0.005000
24	1	1.000000	0.000000	1	0.001000

Threshold-Free Cluster Enhancement (TFCE)

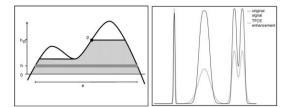
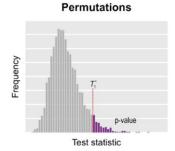
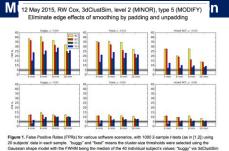



Fig. 1. Illustration of the TFCE approach. Left: the TFCE score at voxel p is given by the sum of the scores of all incremental supporting sections (one such is shown as the dark-grey band) within the arms of "support" of p (light grey). The score for each section is a simple function of the highly h and extent e. Rightscore for justification of TECE-shazed couples. The input contains face of the light h and extent e. Rightsignals of intermediate extent and height. The TFCE output has the same maximal values for all three cases, and preserves the distinct local maxima in the thrid case.

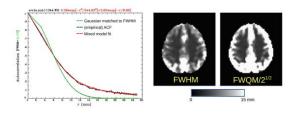
Smith et al., 2009. Neuroimage

Permutation Test


Winkler et al., 2016. Neuroimage

Multiple Comparison Correction

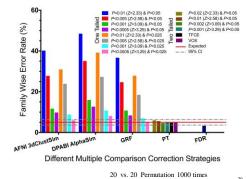
<figure>


Eklund et al., 2016. PNAS

20 subject that in reach failings " Siggly" and mark means the clouder add with intractions were selected using the closes are sheen enroll with the YMM being the median of the disordant address the select selection that is an a sub-cloud selection of the sele

Cox et al., 2016. bioRxiv

Multiple Comparison Correction



Cox et al., 2016. bioRxiv

<figure>Production Contractions Number of the state of the stat

Cox et al., 2016. bioRxiv

Family wise Error Rate

20 vs. 20 Permutation 1000 times Chen, Lu, Yan^{*}, 2018. Human Brain Mapping

Family wise Error Rate

TABLE I. FWER and cluster size of ALFF (smoothness: 7.94 × 7.31 × 6.86) without GSR under corrections	of GRF

(One-tailed twice)		AFNI	3dClustSim	DPAE	II AlphaSim	GRF		
Voxel threshold	Cluster threshold	FWER	Cluster size	FWER	Cluster size	FWER	Cluster size	
P < 0.01 (Z > 2.33)	P < 0.05	40.0%	66.05 ± 0.73	48.3%	60.24 ± 1.68	36.5%	69.35 ± 1.09	
P < 0.005 (Z > 2.58)	P < 0.05	27.6%	43.59 ± 0.42	34.9%	39.45 ± 1.13	24.5%	46.70 ± 0.75	
P < 0.001 (Z > 3.09)	P < 0.05	11.5%	19.98 ± 0.34	15.8%	18.40 ± 0.61	10.6%	21.29 ± 0.46	
P < 0.0005 (Z > 3.29)	P < 0.05	9.6%	14.53 ± 0.25	12.5%	13.93 ± 0.54	8.2%	15.82 ± 0.39	
P < 0.01 (Z > 2.33)	P < 0.025	30.8%	74.50 ± 1.14	39.0%	67.72 ± 2.36	27.7%	78.96 ± 1.24	
P < 0.005 (Z > 2.58)	P < 0.025	23.7%	47.01 ± 0.59	27.1%	44.48 ± 1.60	18.3%	53.48 ± 0.85	
P < 0.001 (Z > 3.09)	P < 0.025	8.6%	22.63 ± 0.25	10.6%	21.00 ± 0.87	6.8%	24.94 ± 0.41	
P < 0.0005 (Z > 3.29)	P < 0.025	5.8%	17.33 ± 0.22	7.9%	16.03 ± 0.71	5.1%	18.51 ± 0.50	

20 vs. 20 Permutation 1000 times

69

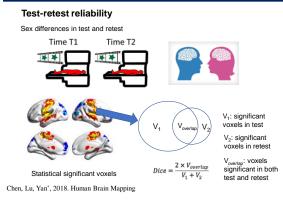
71

Chen, Lu, Yan*, 2018. Human Brain Mapping

Family wise Error Rate

TABLE II. FWER under correction of three kinds of cluster-based correction with the strictest threshold, 6 versions of PT-based correction as well
TABLE II. FWER under correction of three kinds of cluster-based correction with the strictest threshold, 6 versions of PT-based correction as well as EDB correction

	Voxel threshold				1000			. 8	FWER				
		Cluster threshold	ALFF	fALFF	ReHo	DC	VMHC	ALFF with GSR	fALFF with GSR	ReHo with GSR	DC with CSR	VMHC with GSR	ALFF (8 mm smoothed)
Smoothness			7.94 ×	7.34 ×	9.36 ×	7.86 ×	6.31 ×	7.99 ×	7.32 ×	9.24 ×	8.06 ×	6.11 ×	$11.88 \times$
(mm, x×y×z)			$7.31 \times$	7.42 ×	8.72 ×	7.97 X	6.87 ×	7.31 ×	7.41 ×	8.56 ×	8.16 ×	6.61 ×	$11.53 \times$
			6.86	7.20	8.39	7.81	6.61	6.84	7.19	8.18	8.09	6.37	11.68
AFNI 3dClustSim (one-tailed)	P < 0.0005 (Z > 3.29)	P<0.025	5.8%	6.1%	7.35	8.5%	6.0%	5.3%	6.6%	6.9%	6.8%	6.4%	5.5%
DPABI AlphaSim (one-tailed)			7.9%	8.3%	8.5%	10.2%	9.0%	7.8%	7.2%	7.8%	8.3%	9.6%	6.9%
GRF (one-tailed)			5.1%	5.5%	4.9%	7.4%	5.2%	4.8%	5.9%	5.3%	5.1%	6.4%	4.4%
PT cluster extent correction	P < 0.02 (Z > 2.33)	P<0.05	5.8%	3.6%	5.8%	4.6%	5.2%	4.8%	3.9%	3.9%	5.2%	4.3%	5.3%
(two-tailed)	P < 0.01 (Z > 2.58)	P<0.05	5.4%	4.0%	5.7%	4.6%	5.5%	5.3%	3.8%	5.3%	5.0%	4.5%	5.4%
	P < 0.002 (Z > 3.09)	P<0.05	4.5%	4.1%	5.3%	4.8%	4.2%	4.5%	5.0%	5.1%	4.7%	4.3%	4.4%
	P < 0.001 (Z > 3.29)	P<0.05	4.8%	4.5%	4.5%	4.9%	3.4%	4.3%	4.8%	5.4%	4.2%	3.9%	4.1%
PT TFCE			4.6%	3.9%	5.7%	5.0%	4.3%	5.3%	4.2%	5.5%	4.7%	4.8%	4.6%
PT VOX			4.9%	4.9%	5.7%	3.9%	4.7%	6.0%	4.5%	5.6%	4.0%	4.6%	3.9%
FDR correction			3.1%	3.4%	4.4%	2.4%	3.9%	4.1%	2.8%	3.6%	2.4%	3.5%	1.6%


connects in the second row is the estimated effective structures or the timal metric maps need to statistical analysis, and was dimeterit from the applied sincorness (WHIM) in pre-processing. The effective smoothness was used in 3 yetpices of cluster-based correction (i.e., GRF theory correction, AFNI 3dClustSim and DPABI m)

20 vs. 20 Permutation 1000 times

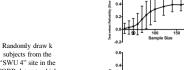
Chen, Lu, Yan*, 2018. Human Brain Mapping

⁶⁸

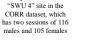
Test-retest Reliability

Test-retest Reliability

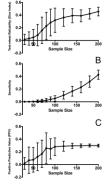
TABLE III. Test-retest reliability of sex differences for all R-fMRI metrics with and without GSR under correction of three kinds of cluster-based correction and the strictest threshold, six kinds of PT-based correction and FDR cor rection, calculated between the first and second sessions in the CORR dataset


							Fest-rete	st reliability	y (dice coef	ficient)				
	Voxel threshold	Cluster threshold	ALFF	fALFF	ReHo	DC	VMHC	ALFF with GSR	fALFF with GSR	ReHo with GSR	DC with GSR	VMHC with GSI		
AFNI 3dClustSim (one-tailed)	P < 0.0005 (Z > 3.29)	P < 0.025	0.65	0.51	0.50	0.34	0.39	0.64	0.48	0.44	0.28	0.24		
DPABI AlphaSim (one-tailed)	4		0.65	0.51	0.49	0.34	0.39	0.64	0.48	0.45	0.27	0.27		
GRF (one-tailed)			0.64	0.51	0.50	0.35	0.39	0.65	0.48	0.43	0.28	0.24		
PT cluster extent correction	P < 0.02 (Z > 2.33)	P < 0.05	0.65	0.70	0.56	0.45	0.40	0.62	0.68	0.45	0.30	0.40		
(two-tailed)	P < 0.01 (Z > 2.58)	P < 0.05	0.67	0.66	0.52	0.32	0.33	0.60	0.63	0.46	0.27	0.32		
	P < 0.002 (Z > 3.09)	P < 0.05	0.63	0.55	0.51	0.36	0.38	0.63	0.52	0.47	0.23	0.32		
	P < 0.001 (Z > 3.29)	P < 0.05	0.64	0.51	0.48	0.37	0.38	0.64	0.48	0.44	0.28	0.26		
PT TFCE	(2) > 5.49)		0.68	0.75	0.54	0.48	0.44	0.66	0.74	0.44	0.31	0.42		
PT VOX			0.66	0.34	0.48	0.37	0.22	0.05	0.51	0.50	0.11	0.14		
FDR correction			0.64	0.67	0.54	0.39	0.37	0.63	0.64	0.47	0.23	0.29		

 Moderate test-retest reliability
 ALFF, fALFF, ReHo are better than DC and VMHC 212 M vs. 208 F × 2 times 74 Chen, Lu, Yan*, 2018. Human Brain Mapping

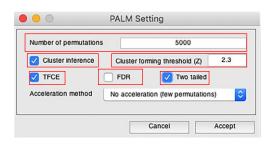

PT with TFCE outperforms · · · · · ÷ Permutation test TFCE, a strict multiple comparison correction strategy, reached the best balance between family-wise error rate (under 5%) and test-retest reliability / replicability and and and and only of a and the second Chen, Lu, Yan*, 2018. Human Brain Mapping 75

Reproducibility of R-fMRI Metrics on the Impact of Different Strategies for Multiple Comparison Correction and Sample Sizes


- · Permutation test with TFCE reached the best balance between FWER and reproducibility
- Although R-fMRI indices attained moderate reliabilities, they replicated • poorly in distinct datasets (replicability < 0.3 for between-subject sex differences, < 0.5 for within-subject EOEC differences)
- · For studies examining effect sizes similar to or even less than those of sex differences, results from a sample size <80 (40 per group) should be considered preliminary, given their low reliability (< 0.23), sensitivity (< 0.02) and PPV (< 0.26).

Sample Size Matters

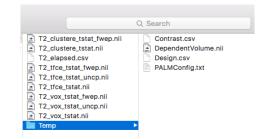
Chen, Lu, Yan*, 2018. Human Brain Mapping


А

Permutation Test

78

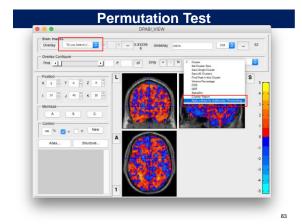
Permutation Test

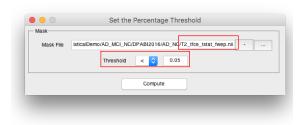

Based on PALM: Winkler, A.M., Ridgway, G.R., Douaud, G., Nichols, $T.\,E.\,,$ Smith, S.M., 2016. Faster permutation inference in brain 79 imaging. Neuroimage 141, 502-516.

Permutation Test

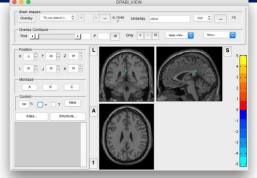
Number of permutation	ŝ		5	000	
Cluster inference	CI	uster form	ning thres	hold (Z)	2.3
TFCE	E FI	DR	۲ 🔽	rwo tailed	
Acceleration method				ermutatio	ns)
		approxim nma appr			
		ative bind			
		/ rank mat permutatio		etion	

Based on PALM: Winkler, A.M., Ridgway, G.R., Douaud, G., Nichols, T.E., Smith, S. M., 2016. Faster permutation inference in brain imaging. Neuroimage 141, 502-516. 80


Permutation Test


Based on PALM: Winkler, A.M., Ridgway, G.R., Douaud, G., Nichols, T.E., Smith, S.M., 2016. Faster permutation inference in brain imaging. Neuroimage 141, 502-516.

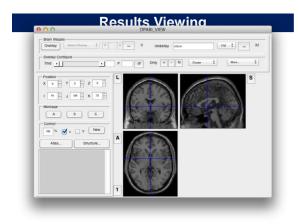
Permutation Test

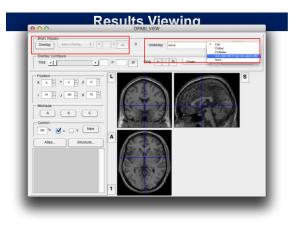

- 1. _vox_tstat.nii is the T value of a voxel.
- _vox_tstat_uncp.nii is the p value corresponds to the rank of the observed T value within the permutations FOR A GIVEN VOXEL (the null distribution is the permuted T values of that given voxel). 2. Computing the rank is one of the ways in which the p-value can be obtained (it's then divided by the number of permutations). _vox_tstat_fwep.nii is the p value corresponds to the rank of the
- 3. observed T value within the permutations of maximum T values across all the voxels (the null distribution is composed by the maximum T value across all the voxels for each permutation). For the corrected, the distribution of the maximum is used as reference, and the rank (or quantile) of a given voxel in relation to that distribution is used to obtain p-values.
- 3. _clustere_tstat.nii is simply the size (in voxels) of the cluster. This number acts as the test statistic.
- 4. _clustere_tstat_fwep.nii: p-values computed in the same way as 3, i.e., using the distribution of the maximum cluster size. 5. The TFCE maps are similar to Points 1, 2 and 3.

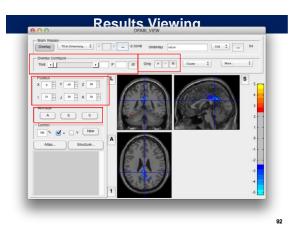
Permutation Test

Multiple Comparison Correction

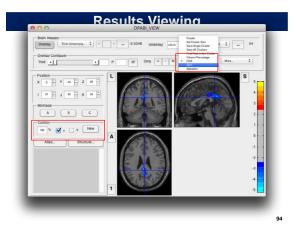
Multiple Comparison Correction




Chen, Lu, Yan*, Human brain mapp. 2017. 20 vs. 20 Permutation 1000 times

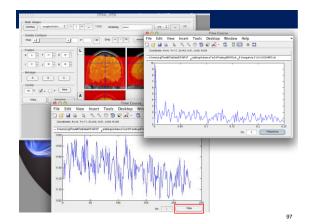

Outline

- Quality Control
- Statistical Analysis
- Results Viewing

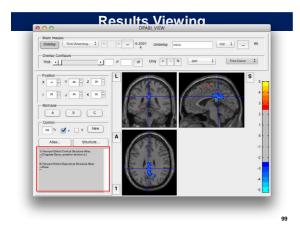


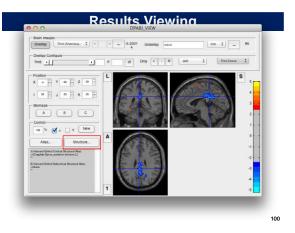
Results Viewing

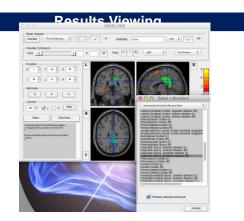
	Overay Fee Name	Netax		Nemin	Pmin	Pmax	Colorbar	Time Point	
-	Alters/ycp17tsAb1TsData/OPARSF_Updating/StatescaAnalys	6.20014	-	-2.42577	2.40577	 5.03728	12		
	Alsers/yop17iaA81TiaData.OP.ARSF_Updating/StatisticalAnalys	-5.04734	-			 4.33739			
			-						
			-						
	REPAICO AT							Cancel	400ep1

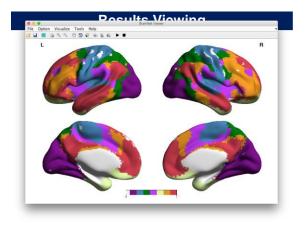


Results Viewing

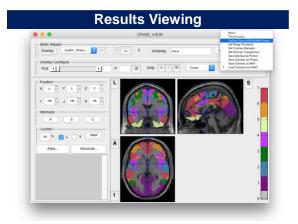


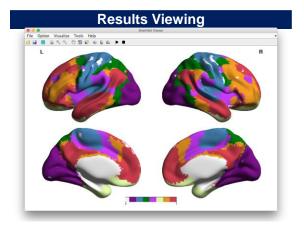

Voxel Z > 2.3, Cluster P < 0.05, Two One-Tailed Corrections: equivalent to Voxel P < 0.0214, Cluster P < 0.1, Two Tailed.

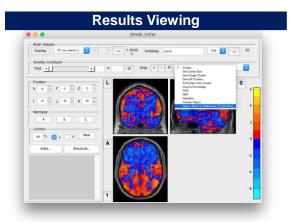




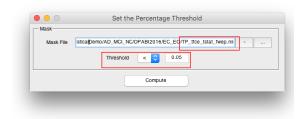
Overlay T2ni (Usersiyop.	+ < >3.5048 Underlay dd.ni	CN2 \$ 54
Overlay Configure	+ P df Only + N Claim	\$ Mare. \$
Position X 0 Y 40 Z	Select an Atlas	3
I I I J I K Montage A S (Control IIII K S V V (/ sward Anas to Ada Harvard-Odor Contral Structural Atlas Harvard-Odord Subconcial Structural Atlas Talarach Dearon Labeis Biodmann Gustom	4 3 1 9
AllasStor	Remove Selected Atlas Cancel	Accept -3
	1	4

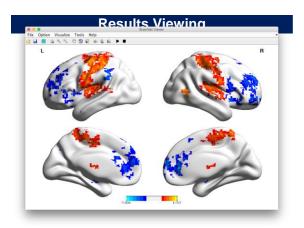






Favoritas	sis	Minkowin Jourgen Junce January Construction Construted Construction Construction Construction Construction Constructi
-	inable: B	


irch
orks_
Bl.ma
\$
1:44 AN
1:44 AN
1:44 AA
1



Permutation Test

Further Help

DPABI特训营与DPABISurf加强营

第六届DPABI/DPARSF特训营 暨DPABISurf加强营通知 中国·北京 2019.10.26~10.28

定期举办,请关注http://rfmri.org

112

深度特训与数据分析

▶ 静息态功能磁共振成像数据处理深度特训

从您见到这条消息开始,您便将有机会与 The R-fMRI Lab 的静急态功能磁共振 专家团队共同探索大脑的奥秘!深度跟纽特训期间,您将会亲身体验。

- 数据处理 专家指导下高效学习静息态功能磁共振成像数据处理
- 思路设计 与国际知名专家讨论形成研究思路
- 论文撰写 系统的 SCI 论文写作训练

http://deepbrain.com

□左總超兵總武總違未進還为一种主逆向其爭求(」然而加總導用總數徵於 軒起還一項具有處違就就性的工作。海邊的原始徵號(重多約分析並導。莫余約 分析方法都以完成考書入所違从、增益的分析方式可以人種的發展的要維中是配達。 考約絕對的結果。兩不道論的分析到可能上都必要做的建設做完全、沒度上越 公司数者口來-AMPC Lab 的专业局功能成像研究团队推出一起式功能磁具推截 個分析能測入實。超出从高空力或違此規載的需求時的成。

DPABISurf工作站

序号	名称	PΠ	市场报导台
1	DPABe教育工作站 (Windows)	14英寸轻薄室边程商务办公笔记本电脑	¥ 8999
	DPABI Educational Core Windows	八代四核八线程/5-8250U, 16G内存, 256G器 近硬盘+17和间硬盘, PCH, 独立显卡, 指纹识别	
	DPAB计算工作站	增式服务器	
2.	(Unux/Windows)	20陽40號程英特尔亚强4114 2.2G *2,9.6GT/s 2UPI,14M ,Turbo, HT(85W),	¥ 59999
	DPABI Computational Core	4*18G8 RDIMM, 64G历音, 2666MT/5, 4*478 7.2K 和M NLSAS, 1678睡意, 元余电 课, RAID-F: H330, DVD-RW 就电 三年服务	
	DPABBRITTE	15.6英寸移动图形工作站	
3.	(Windows)	八代六统十二线程/7~8750H, 16G内存, 256G 但态硬盘+11毛网硬盘, P1000 4G独立显卡	¥24999
	DPABI Mobile Core Windows		

http://deepbrain.com/DPABICore

DPABI计算工作站

http://deepbrain.com/DPABICore

DPABISurf 并行计算:

The R-fMRI Lab

Section 2015 WeChat Official Account: RFMRILab

Acknowledgments

Chinese Academy of Sciences Xi-Nian Zuo Hangzhou Normal University Yu-Feng Zang NYU Child Study Center F. Xavier Castellanos Child Mind Institute Michael P. Milham

117

National Natural Science Foundation of China

- Funding National Key R&D Program of China
 - Chinese Academy of Sciences

Thanks for your attention!