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Computational Methods Regional characteristics of a single voxel

* Regional characteristics of a single voxel Amplitude measures. For a given frequency:
RMS: root mean square (Biswal et al., 1995)
* Relational characteristics among multiple voxels RSFA: standard deviation (Kannurpatti et al. 2008)
ALFF: amplitude of low-frequency fluctuations (Zang
et al., 2007)

fALFF: fractinal ALFF (Zou et al., 2008)
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ALFF vs. fALFF
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Improvement: fractional ALFF
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Introduction

Regional characteristics of a single voxel

* Degree of power-law fitting (Kiviniemi et al., 2000)

* Fractal dimension or Hurst exponent (Maxim et al.,

2005; Wink et al., 2008)

» Multi-scale or approximate entropy (Smith et al., 2014;
Liu et al., 2013a)
* Lyapunov exponent (Xie et al., 2008)
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» Functional Connectivity

« Effective Connectivity

¢ Correlation
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Zhang and Raichle, 2010. Nat Rev Neurol

Regional Homogeneity (ReHo)

Similarity or coherence of the time courses

within a functional cluster

I(R) — n(R)*
L,
12

W=
K - n)

Or COSLOF, Li et al., 2002

Zang et al., 2004, Neuroimage
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Relational characteristics among multiple voxels
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Voxel Mirrored Homotopic Connectivity Graph theoretical analysis
(VMHC)
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Graph theoretical analysis Voxel-wise network centrality metrics
feccceReecceacra
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Degree Centrality

PC-anat

Regular: Small-world: Random: Small-world networks contain Buckner et al., 2009. J Neurosci
high Cpl high Cp : low Cp many local links and a few long-
. distance links (so-called
high s low lowty - ditance nks 3 02206000 0ERRE5RG
Zuo et al., 2011. Cereb Cortex
Cp: average clustering of a network
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Global Signal Correlation

A Voxel strength: ALFF/fALFF

Correlation with
WB signal

Regional synchronization: ReHo
B

WB correlation
significantly
above mean

Homotopic connectivity: VMHC
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Global connectivity: Degree Centrality

GSCorr

Fox et al., 2009. J Neurophysiol
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Interdependencies among different intrinsic
brain function measures

» How concordant differing indices are with respect
to their variation across voxels

» How concordant different indices are with respect
to their variation from one individual to the next

» How concordant differing indices are with respect
to their variation over time
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Temporal Dynamic Perspective
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Introduction Materials and Methods

Enhanced Nathan Kline
The goal of the present work is to provide a w

comprehensive understanding of Institute - Rockland
interdependencies among different intrinsic e Sample

brain activity measures within and across eI
individuals.

173 neurotypical individuals
ages between ages 8 and 86
with quality pass datasets S
(mean age: 44.5; 117 females) MultiBand EPI
TR = 0.645s

37
35 Nooner et al., 2012

Materials and Methods Materials and Methods

Preprocessing @ ) R-FMRI Indices
opobs
o s @ Voxel strength: ALFF/fALFF

e
Regional synchronization: ReHo
@ Homotopic connectivity: VMHC
n Global connectivity: Degree Centrality

GSCorr
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Materials and Methods Materials and Methods

Dynamic R-fMRI Indices Correlation between Global Mean of R-fMRI Indices
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Materials and Methods

Voxel-wise Concordance Index
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Materials and Methods

Volume-wise Concordance Index

Z(R,) ~ n(RY
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Materials and Methods

Age Effects

A given measure = b0 + b1xAge + b2xSex + b3xmeanFD + error

Results and Discussion

Evaluating Concordance among R-fMRI Indices:
Global-Level Analyses
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Results and Discussion Results and Discussion

Evaluating Concordance among R-fMRI Indices: Evaluating Spatial Concordance among R-fMRI
Voxel-wise Analyses Indices: Volume-wise Analysis
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Results and Discussion Results and Discussion

Understanding Low/High Concordance Understanding Low/High Concordance
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Based on DPARSF
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Definition of stability of functional architecture

window length: 645 BOLD signal

All voxels (~44,000) - =%

within the grey matter
nask as features

R " i functional architecture
TW"“ i |,|LW¢|‘JM/"V\' iy e ‘W il "\' of brain voxel was
defined as the Kendall's
I coefficient of concord-
' ance (KCC, also known
as Kendall's W) of

1
1
@ KGN
Wb
// j H‘ “W‘M‘ dynamic functional
connectivity (DFC) over
b NMM\‘MV MNWW M}l‘w w‘ ¥ L time between that voxel
with other regions in the
brain.

A
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The temporal stability of

3 — siiding (step: 4s)
AUl T w 20 x0 The analyses were
8 Time course (s) conducted in a
< . voxel-to-voxel
One certain voxel Vectors of voxel-to-voxel approach, in which
correlation of BOLD signal the KCC of a voxel
Quantify across sliding-time windows was computed
functional based on the
stability ] features of its voxel-
level DFC maps.
Kendall's P

Li et al., in revision

Profile of stability of intrinsic functional architecture

O Result of one-sample T-tests

A sessiont Dorsal B Session2 Dorsal
@ Lateral @
Posterior o~ Hockal Posterior

T-value

]
25-20-15-10 -5 0 5 10 15 20 25
Low Stability  sessp High stability
Lietal., in revision

Profile of stability of intrinsic functional architecture

o

Was the stability of functional architecture above random level?

o

Simulated data was created by randomizing the phases while keeping the amplitude
of the resting-state signals.

A Actual data B Simulated data

+ Al p<E-10in paired-
E sample T-tests
- + grand mean KCC = 0.376
= for the actual data
3 « grand mean KCC = 0.163
for the simulated data

The stability of functional architecture doesn’t exist in simulated random data,
while distributed across the brain in a biological meaningful way.

Raw KCC
-
015
Low stabiily  emmm—)  High stabilly

Li et al., in revision
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Profile of stability of intrinsic functional architecture

O Resting-state fMRI data of 216 young adults from the CoRR (Consortium for
Reliability and Reproducibility) release (Zuo, et al., 2014) was used. The data
contained two scanning sessions acquired at different days, and the two sessions
were analyzed separately.

O The derived KCC for each subject was z-standardized across a grey matter mask, to
increase comparability across participants and conditions.

O One-sample T-tests with zero

Li et al., in revision

Profile of stability of intrinsic functional architecture

O Comparison of functional stability between high-order associative and primary visual

regions.

= Right
Hemizabere

Primary wsual regions

W ot st egons

Lietal., in revision

Stability during natural viewing

O A movie-watching task was employed, during which viewers had to constantly
integrate changing audiovisual stimuli over time, in order to comprehend the movie.

O The dataset from the HBN (Healthy Brain Network) release (Alexander, et al., 2017)
was analyzed. The fMRI data was acquired from 32 children and adolescents, and
there were two runs of resting-state scanning, followed by another run of movie
watching.

O The movie was a 10-min clip of an animated film named “Despicable Me”.
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Stability during natural viewing Stability during natural viewing

O Result of pair-sample T-tests O Inter-subject correlation (ISC) of neural activity (Hasson, et al., 2010), which can

reveal which brain region was engaged when the subjects watched the movie.
A Temporal stability Posterior

O Threshold: r > 0.25 in average and p < 0.001 in one-sample T-test with 0
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Stability during natural viewing

O The stability of functional architecture of a certain region was measured based on the
whole-brain DFC for that region. A further step is to probe which connections
specifically contributed to the difference in stability observed between states.

o

ROI: left pMTG, left Calcarine sulcus

DFC variation for each ROI was calculated as standard deviation of DFC across

sliding-time windows. At the group-level analyses, the DFC variation was compared

http://rfmri.org/wiki
between the two states.
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