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The current diagnostic criteria for MDD are mainly
based on symptoms, calling for objective biomarkers
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A famous journalist: Jin Zhang

First visit: Medicine A: Switch to

suicidal ideation = Medicine B:
MDD turn to mania

Diagnose and
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Global Health
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Mental health for al: a global goal
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Famous Physicist committed
suicide after suffering MDD

» Over 300 million MDD patients
worldwide

» Prevalence in China: 3.4%

» Most heavily burdened disorder

> Potential suicide risk
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B arkers of MDD
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Proinflammatory cytokine?| \ HPA axis?

fMRI Studies on MDD

ANALYSIS | ANALYSIS

Power failure: why small sample
size undermines the reliability of
neuroscience

Scanning the horizon: towards
transparent and reproducible
neuroimaging research
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» Small sample size and restricted power
» Flexibility in data analysis and inconsistent findings
» Inappropriate statistical thresholding leads to high

false positive rates

Not a suitable biomarker for MDD now!
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Methodological Issues: Head Motion
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Head position

Power et al, 2012. Neuroimage
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Head motion is a critical factor in R-fMRI data processing.

Need an effective motion correction strategy!

Methodological Issues: Standardization

Table 1. Factors can introduce unintended variations in MR measurement.
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Road ap for Apply ng fMRI in MDD

Neuroimaging
biomarkers for MDD

Computational
sharing
atform

Head Standard ultiple)
Motion ization Fseecian)
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Methodological Issues: Head Motion

oo . Proposed an effective head
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» Individual-level correction
with the Friston-24 model

head motion covariate

» Cited: 755 times
» ESI Top 0.1% highly cited paper

Yan et al., 2013a. Neuroimage

Methodological Issues: Standardization
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The Impact of Standardization Procedures
on Confound Variables: Site Effects

The Impact of Standardization Procedures
on Variables of Interest: Age Effects

Proposed an effective » Cited: 222 times

standardization strategy > ESITop 1% highly cited paper

Mean regression + SD division Yan et al., 2013b. Neuroimage
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Reproducibility and Multiple Comparison Correction
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Cluster failure: Why fMRI inferences for spatial extent
have inflated false-positive rates
Anders Eklund*"<", Thomas E. Nichols®*, and Hans Knutsson®<
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The last 45y f fMRI
might be totally useless.

Eklund et al., 2016. PNAS

Traditional fMRI Preprocessing Toolbox

* Numerous steps and
configurations

» High learning curve

» Big data era of
neuroimaging calls for
new pipelines

FreeSurfer

Peer Evaluation

Cited by 393 times, ESI Top 1%o top cited paper and hot paper
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Estimation of vocational aptitudes using functional brain
networks
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Reproducibility and Multiple Comparison Correction

PO

Provided guideline for how to
perform multiple comparison
correction for resting-state
fMRI, to best balance family-
wise error rate and

reproducibility, i.e., permutation

_ &
test with TFCE
¢ i
Ranked ESI Top 1% of highly cited ) fiy !
papers
Chen, Lu, Yan’, 2018. Human Brain Mapping 14

Computational sharing platform for fMRI

» Incorporating DPARSF

Prior work, cited for 1803 times

» Adapting methodological updates

Head motion (cited for 755 times)

Standardization (cited for 222 times) oransr 43 orparow
Multiple comparison correction
» Standardized preprocessing pipeline

> Statistical toolbox

» Platform for data sharing

Yan et al., 2016. Neuroinformatics

Corresponding author 16

T-meta-MDD

Started a consortium for big data sharing on 1, RESTmew- MDD i 418 B EHLEL
MDD. Connected by the preprocessing pipeline, " :
DPARSF, cited for over 1800 times
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The R-fMRI Maps Project
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The R-fMRI Maps Project

Data acquisition

High-Performance Computer at IPCAS

Part of the Human Brain Data Sharing Initiative (HBDSI), IPCAS
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REST-meta-MDD
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Linear Mixed Model:

y ~ 1 + Diagnosis + Age +
Sex + Education + Motion +
(1| Site) + (Diagnosis | Site)
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REST-meta-MDD
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Meta-Analysis
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REST-meta-MDD
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REST-meta-MDD

REST-meta-MDD
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Reduced default mode network functional connectivity
in patients with recurrent major depressive disorder
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REST-meta-MDD
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International Collaboration
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Prospective Studies

» RDoC and task-based fMRI?
» Imaging genetics?

» Treatment: medication and brain
stimulation?

» Longitudinal study?
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Go to Surface
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International Collaboration

International Conference on Brain Imaging of Depression

ENIGMA

Cross-culture MDD data collection?
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Go to Surface

ece OPABISurt Pipeline

oPABISurt DPABISurf Pipeline

U -

DPABIS Posine

Why Surface-based Analysis

- Function has surface-based organization

- Inter-subject registration: anatomy, not intensity
- Smoothing

- Clustering

- 2D ReHo other than 3D ReHo

ﬂ

Based on Freesurfer Course
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Why Surface-based Analysis
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Localizing human brain functions is a long-standing goal in
systems neuroscience. Toward this goal, neuroimaging studies
have traditionally used volume-based smoothing, registered data

lume-based parcellations. A novel 360-area surface-based corti-
cal parcellation was recently generated using multimodal data

anda
of this parcellation has frequently been requested for use with
traditional volume-based analyses. However, given the major
methodological differences between traditional volumetric and
Human Connectome Project-style processing, the utiity and in-
{rretaily of sucs o altered prclion st fst be sl
lished.

parcelations and processing them with different methodological
approaches, we show that traditional processing steps, especially
Volume-based smoothing and registration, substantially degrade
cortical area localization compared with surface-based approaches.
We also show that surface-based registration using features

ly
improves the alignment of areas, and that the benefits of high-

cquisitons are largely unexploited by traditional volume.
based methods. Quantitatively, we show that the most common
Version of the traditional approach has spatial localization that is

using two objective measures (peak areal probabiltes and “captured
area fraction” for maximum probability maps). Fially, we demon-

represent volume-based group analysis results on the surface,
which has important implications for the interpretabilty of studies,
I~ both past and future, that use these volume-based methods

The impact of traditional neuroimaging methods on
the spatial localization of cortical areas

Timothy S. Coalson®, David C. Van Essen®!, and Matthew F. Glasser*""
“Depariment of Neurosdence, Washington University School of Meicine, St. Lovis, MO 63110;and 1. Luke's Hospital, St. Lovis, MO 63017

Contributed by David . Van Essen, May 17, 2018 (st for eview January 29, 2015

fewed by Alexander L Cohen, James . Hasby, and Martin . Sereno)
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of incresing
sample sizes,
(9, 10). Traditionally, smoothed group functional activations are
i Nty hrsholded i supmaracd vy ingic 3D oo
ordinates that may be assigned Brodmann's arcas or gyral and
suleal desgnations. Unfortunately, these standard coordinates

representing b funcion] neuroastomy with  singe
ordinates, another key issue is the approach us
subjeet afignment, Because m the bigh degree m mdnldunl

iy areal houndaris e 0 Tode (11, 1
volume-based methods for aligning cortical arcas are imprec

s much of the cerebral cortex (9). Progress in charact
iin th fmctons ofbrinarcs s b mpeded by
factors, along with the distributed nature of many brain func-
tions and the ack of an accurate map of human corteal areas

Significance

Most human brain-imaging studies have traditionally used
low-resolution images, inaccurate methods of cross:sublect

urface-based Analysis

MPM-Captured Area Fraction

1 Peak Area Probabilties N

Peak Area Probability

Coalson et al., 2018. PNAS

Widespread adoption of surface-based approaches has been
slow: the desire to replicate or compare with existing studies that
used the traditional volume-based approach; the relative lack of
“turn-key” tools for running a surface-based analysis; the learning
curve for adopting surface-based analysis methods;
unawareness of the problems with traditional volume-based
analysis; and uncertainty or even skepticism as to how much of a
difference these methodological choices make.
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Why Surface-based Analysis

Coalson et al., 2018. PNAS
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» DPABI
Surf
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Standardzaton
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VN Vi with DPABISU Docker

“The RL-MAI Maps Project
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Thanks for your attention!
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