

1

3

Verification of Reproducibility of R-fMRI Metrics and Reproducible Network Underpinnings of Rumination

Xiao Chen 陈晓 chenxiao@psych.ac.cn The R-fMRI Lab International Big-Data Center for Depression Research Institute of Psychology, Chinese Academy of Sciences

Outline

- •Verification of Reproducibility of R-fMRI Metrics
- Reproducible Network
- **Underpinnings of Ruminaiton**

Introduction

"Reproducibility Crisis"

RESEARCH

RESEARCH ARTICLE

Estimating the reproducibility of psychological science

Open Science Collaboration

carrent search is unknown. We conclude regulations of 200 sequences and organic tables publishes in the sequences of the sequences of the sequences of an organic materials when available. Replication effects were half the magnitude of organic effects, sequencing a available, Replication effects were half the magnitude of organic effects of organic effects area were in the SPN confidence interval of the sequences of the sequences effects were subjective rule to have replicated in organic and the sequences of the sequences results as assumed, controlling organic and replication results in BOWs with statisticable in statisticable and the sequences of the sequences of the sequence approximation of the sequences of the sequences of the sequences of the sequences of the sequence are replaced in the statisticable in the steaping of organic effects are the sequences of the sequences of the sequence are replaced in the steaping of organic effects are the sequences of the sequence are replaced in the steaping of organic effects are the sequences of the sequence are replaced in the steaping of organic effects are the sequences of the sequence are replaced in the steaping of organic effects are the sequences of the sequence are replaced in the steaping of organic effects are the sequences of the sequence are replaced in the sequences of the sequence are replaced in the steaping of organic effects are the sequences of the sequence are replaced in the steaping of organic effects are the sequences of the sequence are replaced in the steaping of organic effects are the sequences of the sequence are replaced in the steaping of organic effects are the sequences of the sequence are replaced in the steaping of organic effects are replaced are replaced are replaced are replaced in the sequence of the sequence are replaced are replaced are replaced are replaced are replaced in the sequence of the sequence are replaced are replaced are replaced are replaced are repla

Open Science Collaboration, 2015. Science

Introduction

False findings may be the majority majority of published research claims

Analysis of the reproducibility of published data in 67 in - house projects

Prinz et al., 2011. Nat Rev Drug Discov 4

Introduction

ANALYSIS

Power failure: why small sample size undermines the reliability of neuroscience

NeuroScience: Jone A Security Color Molgar. Barr A Nature Statistics J. Barry J. March A. Security Color Molgar. Barr A. Nature January M. H. Statistics J. & Bohard S. H. Schwart K. Market Science J. Anny with the statistication and statistication as an effilatist is non-all questioned that the space and so science is a Markater take a statistic advance of the statistic science of the statistic science of the statist is non-all questioned that the space and so science of the Markater at a statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the space of the statistic science of the statistic science of the statistic science of the statistic science of the space of the statistic science o

Button et al., 2013. Nat Rev Neurosci

ANALYSIS

Scanning the horizon: towards transparent and reproducible neuroimaging research Neuroi A Retractive Core of Retract / Report / Corporential Retract A Retractive Core of Retractive Core Retractive Retractive Description of the three Core of Retractive Core Retractive Retractive Description of the three Core of Retractive Core Retractive Retractive Core of the retractive Retractive Core of Retractive Core Retractive Retractive Retractive Retractive Core of Retractive Core Retractive Core Retractive Retractive Retractive Core of Retractive Core Retractive Core Retractive Retractive Retractive Core of Retractive Core Retractive Core Retractive Retractive Core of Retractive Core Retractive Core Retractive Core Retractive Retractive Core Retractive Core Retractive Core Retractive Core Retractive Retractive Core Retractive Core Retractive Core Retractive Core Retractive Retractive Core Retractive Core Retractive Core Retractive Core Retractive Retractive Core Retractive Core Retractive Core Retractive Core Retractive Retractive Core Retractive Core Retractive Core Retractive Core Retractive Retractive Core Retractive Core Retractive Core Retractive Core Retractive Retractive Core Retractive Core Retractive Core Retractive Core Retractive Retractive Core Retractive Core Retractive Core Retractive Core Retractive Retractive Core Retractive Core

Poldrack, et al., 2017. Nat Rev Neurosci

Introduction

Introduction

Statistical thresholds

Reproducibility is highly sensitive to the statistical threshold used to define significance

Introduction

10

8

Reproducibility and Multiple Comparison Correction

11

Reproducibility and Multiple Comparison Correction

Multiple Comparisons

Bonferroni correction

The Bonferroni correction rejects the null hypothesis for each $p_i{\le}\alpha/m~$, thereby controlling the FWER at ${\le}\alpha$

FWER =
$$P\left\{\bigcup_{i=1}^{m_0} \left(p_i \leq \frac{\alpha}{m}\right)\right\} \leq \sum_{i=1}^{m_0} \left\{P\left(p_i \leq \frac{\alpha}{m}\right)\right\} = m_0 \frac{\alpha}{m} \leq m \frac{\alpha}{m} = c$$

Carlo Emilio Bonferroni

13

Reproducibility and Multiple Comparison Correction

Permutation Test

Ronald Aylmer Fisher

15

Reproducibility and Multiple Comparison Correction

Multiple Comparisons

Gaussian Random Field Theory Correction

Monte Carlo simulations (AlphaSim)

14

Reproducibility and Multiple Comparison Correction

Threshold-Free Cluster Enhancement (TFCE)

Fig. 1. Illustration of the TFCE spectrak. Left, the TFCE store at vacue *j* is given by the num of the scores of all incremental supporting sections (non exuely is shown as the data-given band within the next of "support" dee (role that the scores of all incremental supporting sections (non exuely is advant and the data-given band and the score of support dee (role that the scores of all incremental support and score the score scare of length and the score of the s

Smith et al., 2009. Neuroimage

16

Multiple Comparison Correction

Construct failure: Why fMRI inferences for spatial extent the state of the sta

 Up to 70% of fMRI analyses produce at least one false positive, challenging the validity of over 40,000 studies.

Eklund et al., 2016. PNAS

Reproducibility and Multiple Comparison Correction

Eklund et al., 2016. PNAS

Introduction

Small samples in neuroscience

Median sample size: 15 for one group studies and 14.75 per group for two group studies (Carp, 2012)

19

Introduction

Low power studies are unlikely reflecting a true effect

Introduction

Positive Predictive Value, PPV

After a research finding has been claimed based on achieving formal statistical significance, the post-study probability that it is true

Research	True Relationship		
Finding	Yes	No	Total
Yes <	c(1-(0AVR+1)	> cm/(R+1) <	$cR + \alpha - BRMR + 11$
No	c(RER + 1)	c(1-ob/VR+1)	c(1 - or + DPb/SR + 1)
Total	(8/38 + 1)	c/08+11	6

Introduction

Summary

- The impact of multiple comparison correction strategy (considering FWER) on reproducibility (test-retest reliability and replicability)
- The impact of sample size on reproducibility (test-retest reliability)

Introduction

Defining reproducibility

We sought to propose a quantitative method to calculate reproducibility of R-fMRI metrics

4

Materials and Methods

Participants and Imaging Protocols

Consortium for Reliability and Reproducibility (CORR)

1000 Functional Connectomes Project (FCP)

Materials and Methods

CORR dataset

Sample size: 420 (212 M vs. 208 F) Scanned 2 times Inclusion criteria (from 549): Age between 18 and 32 No extreme head motion No poor T1 or functional images, low quality normalization or inadequate brain coverage

Beijing EOEC1 dataset

Sample size: 48 Eyes-open vs. eyes-closed Same Inclusion criteria

Chen, Lu, Yan*, 2018. Human Brain Mapping

1000 Functional **Connectomes Project** (FCP) dataset

Sample size: 716 (296 M vs. 420 F) Same inclusion criteria

Beijing EOEC2 dataset

Sample size: 20 Eyes-open vs. eyes-closed Same inclusion criteria

Materials and Methods

Preprocessing

- 1. The first 10 volumes were discarded
- 2. Slice-timing correction

shifted to the slice at the mid-point of each TR 3. Realignment

six-parameter (rigid body) linear transformation two-pass procedure

4. Co-registration and segment

six degree-of-freedom linear transformation without

re-sampling

5. Transformation from native space to MNI space Diffeomorphic Anatomical Registration Through

Exponentiated Lie algebra tool (DARTEL)

26

Materials and Methods

Nuisance Regression

A General Linear Regression Model including:	$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$
1. Head motion	
Friston 24-parameter model ar	nd mean FD
2. Global Signal Regression (GSF	ξ)
Results both with and without (GSR were evaluated
3. Other sources of spurious varia	ince
WM and CSF signals	
4. Linear trends	
Temporal bandpass filtering (0.01-	–0.1 Hz)
All time series except for ALFF	and fALFF analyses
	27

Materials and Methods

A Broad Array of R-fMRI Metrics

ALFF:

The mean of amplitudes within a specific frequency domain (here, 0.01-0.1Hz) from a fast Fourier transform of a voxel's time course

fALFF:

A normalized version of ALFF and represents the relative contribution of specific oscillations to the whole detectable frequency range

ReHo:

A rank-based Kendall's coefficient of concordance that assesses the synchronization among a given voxel and its nearest neighbors' (here, 26 voxels) time courses

Degree Centrality:

The number or sum of weights of significant connections for a voxel. The weighted sum of positive correlations with a threshold of r>0.25 VMHC:

The functional connectivity between any pair of symmetric interhemispheric voxels

28

Materials and Methods

Evaluating FWER of Different Strategies to Correct for Multiple Comparisons

Materials and Methods

Influences of Sample Size on Test–Retest Reliability, Sensitivity and PPV

Influences of Sample Size on Test–Retest Reliability, Sensitivity and PPV

Different Multiple Comparison Correction Strategies FWER calculated with ALFF without GSR (4mm FWHM smoothing kernel) 35

|--|

	(One-ta	iled twice)			AFN	I 3dClu	stSim		DPA	BI Alph	aSim			GRF	
Voxel the	eshold	Cluster	threshold	i i	FWER	Clu	ster size	2	FWER	Clu	ster size		FWER	Clu	ster size
P < 0.01 (Z > 2.33)	P < 0.05			40.0%	66.1	15 ± 0.73	3	48.3%	60.3	24 ± 1.68	3	36.5%	69.3	5 ± 1.09
P < 0.005	(Z>2.58)	P < 0.05			27.6%	43.	59 ± 0.42		34.9%	39.4	15 ± 1.13	3	24.5%	46.3	0 ± 0.75
P < 0.001	(Z > 3.09)	P < 0.05			11.5%	193	98 ± 0.34		15.8%	18.4	10 ± 0.61		10.6%	21.3	9 ± 0.46
P < 0.0003	5 (Z > 3.29)	P < 0.05			9.6%	14.	53 ± 0.25	5	12.5%	13.5	93 ± 0.54	ł.	8.2%	15.8	2 ± 0.39
P < 0.01 (Z > 2.33)	P < 0.023	5		30.8%	74.	50 ± 1.14		39.0%	67.3	72 ± 2.36	5	27.7%	78.5	6 ± 1.24
P < 0.005	(Z>2.58)	P < 0.023	5		23.7%	47.	01 ± 0.59	9	27.1%	44.4	18 ± 1.60)	18.3%	53.4	8 ± 0.85
P < 0.001	(Z > 3.09)	P < 0.023	5	-	8.6%	22.0	53 ± 0.25	5	10.6%	21.0	00 ± 0.87	· _	6.8%	24.5	4 ± 0.41
P < 0.000	5 (Z > 3.29)	P < 0.02	5	C	5.8%) 17.	33 ± 0.22	2 C	7.9%	16.0	03 ± 0.71		5.1%)8.	1 ± 0.50
•1=				_				~	~	_		_			
								74	nily Wise Dru	Rain +					
		Vosel Threshold -	Threshold e	ALLER .		Pollo -	DC .	vour .	ALFF	GALLER	Rella.	DC with	VMHC	ALTY (Rem	e -
_					case.				with CISR #	with CSR /	with CSR /	CSR /	with (358, #	model)	
	100	and and a second a		7.94-7.31	7.36+7.42	9.36+8.72	7.86+7.97	6.31+6.87	7.99+7.31	7.32=7.41	9,24+8.56	8.06+8.16	6.11+6.61	11.88+11.53	+2
		Contraction of Station		~6.86 +	+7.29 /	-8.39 /	×7.81 ×	+6.61 #	×6.84 ×	×7.19 ×	+8.28 /	-8.09 /	-6.37 #	×11.68 #	
	(Ose Tailed) -	P. C. 6000 (P.). 1 No		5.8%•	6.1%•	7.3%•	8.5%•	6.0%	5.3%*	6.6%*	6.9%•	6.8%•	6.4%•	5.5%*	•
1	(One Tailed) +			7.9%•	8.3%•	8.5%•	10.2%	9.0%	7.8%	7.7%*	7.8%*	8.3%•	9.6%*	6.9%*	÷
	Gaussian Random Field (One Tailed) +			5.1%*	5.5%**	4.9%**	7.4%**	5.2%	4.8%*	5.9%**	5.3%*	5.1%*	6.4%*	4.4%*	÷
		$P \leq 0.02 \; (Z \geq 2.53) \sim$	$P \leq 0.05 -$	5.8%+	3.6%	5.8%+	4.6%+	5.2%	4.8%~	3.9%+2	5.5%*	5.2%*	4.3%+	5.3%+	<u>م</u>
	PT Cluster Extent Corraction (Two	$P < 0.01 \; (Z > 2.58) \; s$	P < 0.05 +	5.476	4.0%**	5.7%	4.6%	5.5%	5.3%*	3.8%**	5.3%•	5.0%*	4.5%	5.4%	÷
	Tailed) +	P < 0.082 (Z > 3.09) .	P<0.05	4.5%•	4.1%	5.3%-	4.8%~	4.2%	4.5%~	5.0%*	5.1%-	4.7%	4.3%~	4.4%	7
		$P < 0.001 \; (Z \geq 3.29) \; s$	P < 0.05	4.8%**	4.5%	4.5%*	4.9%*	3.4%	4.3%**	4.8%*	5.4%**	4.2%	3.9%*	4.1%	1
	T Throshold-Free Cl	uter Enhancement (TFC)	a),	4.6%+	3.9%*	5.7%	5.0%+	4.3%	5.3%~	4.2%+	5.5%*	4.7%	4.8%+	4.6%	
	T Vosal-Wise Corro	tties (VOR) +		4.9%	4.9%*	5.7%	3.9%+	4.7%	6.0%*	4.5%*	5.6%**	4.0%	4.6%+	2.9%=	
	DR Consulion /			3.1%+	3.4%	4.4%*	2.4%	3.9%	4.1%*	2.8%**	3.6%**	2.4%	3.5%+	1.6%	36

Results

Test-retest reliability of between-subject sex difference

							Test-rete	st reliability	y (dice coef	ficient)		
	Voxel threshold	Cluster threshold	ALFF	fALFF	ReHo	DC	VMHC	ALFF with GSR	fALFF with GSR	ReHo with GSR	DC with GSR	VMHC with GSF
AFNI 3dClustSim (one-tailed)	P < 0.0005 (Z > 3.29)	$P \! < \! 0.025$	0.65	0.51	0.50	0.34	0.39	0.64	0.48	0.44	0.28	0.24
DPABI AlphaSim (one-tailed)			0.65	0.51	0.49	0.34	0.39	0.64	0.48	0.45	0.27	0.27
GRF (one-tailed)			0.64	0.51	0.50	0.35	0.39	0.65	0.48	0.43	0.28	0.24
PT cluster extent correction	P < 0.02 (Z > 2.33)	P < 0.05	0.65	0.70	0.56	0.45	0.40	0.62	0.68	0.45	0.30	0.40
(two-tailed)	P < 0.01 (Z > 2.58)	P < 0.05	0.67	0.66	0.52	0.32	0.33	0.60	0.63	0.46	0.27	0.32
	P < 0.002 (Z > 3.09)	P < 0.05	0.63	0.55	0.51	0.36	0.38	0.63	0.52	0.47	0.23	0.32
	P < 0.001 (Z > 3.29)	P < 0.05	0.64	0.51	0.48	0.37	0.38	0.64	0.48	0.44	0.28	0.26
PT TFCE			0.68	0.75	0.54	0.48	0.44	0.66	0.74	0.44	0.31	0.42
PT VOX			0.66	0.34	0.48	0.37	0.22	0.65	0.31	0.38	0.11	0.14
FDR correction			0.64	0.67	0.54	0.39	0.37	0.63	0.64	0.47	0.23	0.29

◆ Moderate test-retest reliability

♦ ALFF, fALFF, ReHo are better than DC and VMHC 37

Test-retest Reliability

Results

Replicability of between-subject sex difference

							Repli	cability (die	e coefficier	nt)		
	Voxel threshold	Cluster threshold	ALFF	fALFF	ReHo	DC	VMHC	ALFF with GSR	fALFF with GSR	ReHo with GSR	DC with GSR	VMHC with GSR
AFNI 3dClustSim (one-tailed)	P < 0.0005 (Z > 3.29)	P < 0.025	0.12	0.10	0.07	0.07	0.01	0.10	0.11	0.02	0.08	0.02
DPABI AlphaSim (one-tailed)			0.13	0.09	0.07	0.07	0.02	0.10	0.11	0.02	0.08	0.02
GRF (one-tailed)			0.13	0.10	0.07	0.07	0.01	0.10	0.11	0.02	0.08	0.02
PT cluster extent correction	P < 0.02 (Z > 2.33)	P < 0.05	0.21	0.13	0.14	0.17	0.05	0.21	0.06	0.12	0.22	0.10
(two-tailed)	P < 0.01 (Z > 2.58)	P < 0.05	0.19	0.11	0.11	0.16	0.02	0.17	0.09	0.08	0.24	0.08
	P < 0.002 (Z > 3.09)	P < 0.05	0.14	0.10	0.08	0.11	0.02	0.12	0.10	0.03	0.05	0.03
	P < 0.001 (Z > 3.29)	P < 0.05	0.12	0.10	0.07	0.07	0.01	0.10	0.11	0.02	0.08	0.02
PT TFCE			0.25	0.06	0.13	0.20	0.01	0.25	0.03	0.09	0.26	0.02
PT VOX			0.02	0.00	0.01	0.00	0.00	0.01	0.05	0.00	0.00	0.00
FDR correction			0.15	0.06	0.11	0.09	0.02	0.13	0.04	0.05	0.08	0.00

Poor replicability

39

Results

◆ Female's PCC demonstrate more spontaneous activity than male

Results

Replicability of within-subject EOEC difference

							Repli	cability (dia	e coefficier	it)		
	Voxel threshold	Cluster threshold	ALFF	fALFF	ReHo	DC	VMHC	ALFF with GSR	fALFF with GSR	ReHo with GSR	DC with GSR	VMHC with GSR
AFNI 3dClustSim (one-tailed)	P < 0.0005 (Z > 3.29)	P < 0.025	0.15	0.11	0.26	0.03	0.10	0.14	0.11	0.31	0.07	0.10
DPABI AlphaSim (one-tailed)			0.15	0.11	0.26	0.03	0.10	0.14	0.11	0.31	0.07	0.09
GRF (one-tailed)			0.15	0.11	0.27	0.04	0.10	0.14	0.11	0.30	0.05	0.10
PT cluster extent correction	P < 0.02 (Z > 2.33)	P < 0.05	0.46	0.27	0.44	0.24	0.21	0.41	0.30	0.49	0.28	0.17
(two-tailed)	P < 0.01 (Z > 2.58)	P < 0.05	0.39	0.24	0.40	0.20	0.16	0.35	0.21	0.48	0.18	0.21
	P < 0.002 (Z > 3.09)	P < 0.05	0.22	0.16	0.32	0.06	0.14	0.19	0.16	0.35	0.09	0.12
	P < 0.001 (Z > 3.29)	P < 0.05	0.15	0.11	0.27	0.04	0.10	0.14	0.11	0.30	0.05	0.09
PT TFCE)			0.49	0.31	0.45	0.29	0.20	0.46	0.32	0.47	0.30	0.20
PT VOX			0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00
FDR Correction			0.09	0.00	0.29	0.03	0.08	0.12	0.00	0.34	0.12	0.10

Higher than between-subject sex difference but still not moderate

Results

- Eyes open < Eyes closed in bilateral pre- and post-central gyrus</p>

Sample Size Matters

Randomly draw k subjects from the "SWU 4" site in the CORR dataset, which has two sessions of 116 males and 105 females

А

Chen, Lu, Yan*, 2018. Human Brain Mapping

Discussion

Main findings:

- Liberal correction strategies yield unacceptable high FWERs
- PT with TFCE reach the best balance between FWER and reproducibility
- Between-subject design has moderate test-retest reliability but poor replicability
- Within-subject design has better replicability but still not moderate
- Larger sample size increases reproducibility, sensitivity as well as PPV

45

Discussion

What correction strategy can be used?

According to FWER...

- ♦ GRF correction with strict p values (voxel wise P<0.0005 and cluster wise P<0.025 for each tail)
- Four kinds of PT with extent thresholding
- PT with TFCE
- PT with VOX
- FDR correction
- According to reproducibility...

Strict strategies cannot achieve moderate reproducibility, except PT with

TFCE

Permutation Test with TFCE

ESI Top 1% highly cited (>60 times)

<complex-block>

49

Discussion

One- or two-tailed?

P<0.01 (Z>2.33) & P<0.06 P<0.005 (Z>2.58) & P<0.05 P<0.001 (Z>3.09) & P<0.05 P<0.008 (Z>2.28) & P<0.05 P<0.008 (Z>2.28) & P<0.025 P<0.005 (Z>3.28) & P<0.025 P<0.005 (Z>3.29) & P<0.025 P<0.005 (Z>3.29) & P<0.025

FWER cannot be controlled to the norminal level by doing one tailed correction twice

50

Discussion

Sample size (k)	Test–retest reliability (dice index)	Sensitivity	PPV
30	0.02 ± 0.08	0.001 ± 0.004	0.02 ± 0.09
40	0.03 ± 0.11	0.001 ± 0.01	0.07 ± 0.21
50	0.05 ± 0.13	0.004 ± 0.01	0.07 ± 0.19
60	0.08 ± 0.17	0.01 ± 0.02	0.12 ± 0.22
70	0.16 ± 0.21	0.01 ± 0.02	0.17 ± 0.22
80	0.23 ± 0.22	0.02 ± 0.03	0.26 ± 0.24
90	0.28 ± 0.21	0.04 ± 0.04	0.25 ± 0.16
100	0.32 ± 0.19	0.05 ± 0.04	0.28 ± 0.14
120	0.36 ± 0.14	0.10 ± 0.06	0.29 ± 0.08
140	0.39 ± 0.11	0.17 ± 0.08	0.29 ± 0.04
160	0.39 ± 0.09	0.23 ± 0.09	0.30 ± 0.03
180	0.42 ± 0.08	0.32 ± 0.09	0.30 ± 0.02
200	0.46 ± 0.07	0.43 ± 0.07	0.30 ± 0.02

Results from a sample size <80 (40 per group) should be considered preliminary, given their low reliability (< 0.23), sensitivity (< 0.02) and PPV (< 0.26)

51

Discussion

Chargen Ann Char, J P.C. Bin, M.		Latent commit TheETA 10 days age
Escloratuplingtory in the	(227) 484 (42	TO days age
E 00009 stallwing2out Che	.3297.)4064.R2	90 days age
E PREMerijskom Ohr	_3972466LR2	90 Keyn age
E W Suls, CORE, Betweendesslerum One	20201404-002	10 days ege
Eweni, con the	(3212)48M(R2	12 days age
E SurphStations John enforcements Shekan	(3097) HBM (R2	90 days age

All statistical maps have been shared through the R-fMRI Maps project (http://rfmri.org/maps)

Key source code have been shared through (https://github.com/Chaogan-

Yan/PaperScripts/tree/master/Chen_2017_HBM)

Thus our findings could be easily reproduced by any researchers

52

Outline

·Verification of Reproducibility of

R-fMRI Metrics

Reproducible Network

Underpinnings of Ruminaiton

Rumination

Rumination

The R-fMRI Maps Project

\$5

Repetitive thinking about negative personal concerns and/ or about the implications, causes, and meanings of a negative mood

Example:

What do I do to deserve this?

Why these things happened to me?

Features

- Self perpetuate
- Recycled
- Long-lasted

Nolen-Hoeksema et al., 2008. Perspect Psychol Sci

Susan Nolen-Hoeksema (1959 – 2013)

Self-Generated Thoughts

Literature Review

Rumination and Task-fMRI: DMN

Literature Review

Correlation studies on trait ruminaiton: DMN

resting/task fMRI metrics

58

Rumination State

"Rumination State"

- A subject-driven, relatively long period of mental state
- Continuous and dynamic thinking style following the instructions

Rumination State Task

Zhu et al., 2012

Materials and Methods

Subjects: Healthy adults (N = 41)

Rumination State Task

Brain Storm

Rumination State Task

Rumination State

Discussion

Bar, 2009. Trends in cognitive sciences

65

Discussion

Olsson and Ochsner, 2007. Trends in cognitive sciences

Future Work

REST-meta-MDD Project

Future Work Multi-sited rumination state research based on REST-meta-MDD O dpab * * State Brain Networks 04 1 = -----Dynamics 0 to der CA A ing with 135 Inter-subject correlation 68

Acknowledgements

.

National Natural Science Foundation of China Funding • National Key R&D Program of China Chinese Academy of Sciences

NYU Child Study Center F. Xavier Castellanos

69

Further Help

暨DPABISurf加强营通知 中国·北京 2019.10.26~10.28

定期举办,请关注http://rfmri.org

DPABISurf工作站

DPABI工作站

字句	名称	91	市场报导价
1	DPABI包定作品 (Windows) DPABI Educational Core Windows	14英寸轻寒军动组商务办公军记半电脑 八代国统八线组15-82500, 16G内存, 256G摄 活动盘+1T电间接盘, PCIe, 独立显卡, 指纹识别	¥ 8999
2.	DPABI计算工作站 (Linux/Windows) DPABI Computational Core	端式服务器 20時405編集時代原稿4114 2.2G *22,8GT75 2019,14M, Turbo, HTIBSW, 4*18G 728,8MR 0.4G2(約2,2668MT/5, 4*187 228,8MR 1058,5,10TB編集)、2680 業,RaiD+F: H330, DVD-RW 服後 三年編券	¥ 59999
3.	DPABBit()_(h16 (Windows) DPABI Mobile Core Windows	15.4英寸移动图形工作站 八代小统十二届程7-87504, 160内容, 2560 国志建盘+11毛网建造, P1000 4G国立显卡	¥24999

http://deepbrain.com/DPABICore

 Modil PRE-International Contraction
 Modil The State State State State Contraction
 Modil State States Stat

73

DPABI计算工作站

 WERE
 WERE

 Wind Window
 Defending Window
 Defending Window
 USED (State 114 2.2)

 View Computation
 View Computation
 View Computation
 USED (State 114 2.2)

 Market Computation
 View Computation
 View Computation
 USED (State 114 2.2)

 http://deepbrain.com/DPABICore
 DPABISSurf 并行计算:

 Geochemistry
 200
 个被试的皮层计算!!!!

74

The R-fMRI Lab

NeChat Official Account: RFMRILab

Acknowledgments

Chinese Academy of Sciences Xi-Nian Zuo Hangzhou Normal University Yu-Feng Zang NYU Child Study Center F. Xavier Castellanos Child Mind Institute Michael P. Milham

- National Natural Science Foundation of China
- Funding National Key R&D Program of China
 - Chinese Academy of Sciences

76

Thanks for your attention!